

Example Calculations

Melissa C. Martin, M.S., FACR, FAAPM, FACMP September 11, 2009

Example Calculations are Based on NCRP Report No. 151

Page 2

TRUCTURAL SHIELDING DESIGN AND EVALUATION 'OR MEGAVOLTAGE X- AND GAMMA-RAY PADIOTHERAPY FACILITIES

NCRP

- Report Title: "Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities"

 Released December 31, 2005
- Calculations here illustrate the NCRP 151 recommendations
- Previous NCRP reports are also cited in some cases

 e.g., NCRP 51 and NCRP 79
- Detailed example calculations can be found at: http://www.therapyphysics.com/WC2009_Examples.pdf

Detailed example calculations can be found on web site

Comparison	of B	JR #11	and B	JR #17	MV de	efinitio	ns
BJR #11 MV	4	6	10	15	18	20	24
BJR #17 MV	4	6	10	16	23	25	30
	4	0	10	10		25	30

NCRP 151 Recommended Workload [1 of 2]

Workload (W)

 "Time integral of the absorbed-dose rate determined at the depth of the maximum absorbed dose, 1 m from the source"

- 450 Gy/wk maximum weekly workload cited in NCRP 151
 - Kleck (1994)
 - » Maximum 350 Gy/wk for 6 MV
 - » Maximum 250 Gy/wk at high MV for dual energy
 - Mechalakos (2004)
 - » Maximum 450 Gy/wk for 6 MV single-energy
 - » Maximum 400 Gy/wk for dual energy
 - NCRP 151 Section 7 examples assume 450 Gy/wk at high MV

450 Gy / wk absorbed dose is the default weekly workload

NCRP 151 Recommended Workload [2 of 2]

- 30 patients treated per day is default assumption
 - NCRP 151 default recommendation for busy facility
 - Can also base on a conservative estimate influenced by factors such as historical workload and demographics • e.g. lower patient workload for facility in small town

3 Gy absorbed dose per patient treatment default

- Assumption used in NCRP 151 Section 7 examples
- Consistent with 450 Gy/wk with 30 patients treated per day
- » 450 Gy/wk = 5 treatments/wk/patient x 3 Gy/treatment x 30 patients
- Equivalent to 219 cGy treatment fraction (0.73 tissue maximum ratio)
- Intentionally somewhat conservative (compared to -200 cGy fraction) since no specific allowance for quality or maintenance workload
 Can be based on direct knowledge of accelerator use instead
- » But preferable to stick with the NCRP 151 default

450 Gy/wk is consistent with 30 patients & 3 Gy/treatment

Workload Assumptions for Dual Energy Linear Accelerators

- Preferable to assume full 450 Gy/wk workload is at the higher energy
 - Simpler, more conservative calculation
 - Appropriate for new construction
- For existing construction, dual-energy calculation may be appropriate
 - If modifications to existing vault are difficult and size constrained
 Split 30 patient workload to ensure at least 250 Gy/wk at higher MV
 With 17 patients, 255 Gy/wk at higher MV

Mode	Gy/wk/patient	Patients/day	W (Gy/wk)	
Single x-ray mode	15	30	450	
Dual x-ray mode	15	30	450	At least 250
High-X mode	15	17	255	Gy/wk at high
Low-X mode	15	13	195	MV mode

Radiation Protection Limits

- Shielding Design Goal (P)
 - Level of dose equivalent (H) used in the design calculations
 - Applies to barriers designed to limit exposure to people
 - » Limiting exposure to unoccupied locations is not the goal

Page

Page 9

- Stated in terms of mSv at the point of nearest occupancy
- NCRP 151 recommended values for shielding design goal
 - 0.10 mSv/week for controlled areas
 0.02 mSv/week for uncontrolled areas
- Lower values may be applicable in your country

Controlled Areas

- Limited-access area in which the occupational exposure of personnel to radiation or radioactive material is under the supervision of an individual in charge of radiation protection
- Access, occupancy and working conditions are controlled for radiation protection purposes
- Areas are usually in the immediate areas where radiation is used, such as treatment rooms and control booths, or other areas that require control of access, occupancy, and working conditions for radiation protection purposes
- The workers in these areas are those individuals who are specifically trained in the use of ionizing radiation and whose radiation exposure is usually individually monitored

Uncontrolled Areas

- All other areas in the hospital or clinic and the surrounding environs
- Trained radiation oncology personnel and other trained workers, as well as members of the public, frequent many areas near controlled areas such as examination rooms or restrooms
 - Choice of appropriate occupancy factors ensures the protection of both those who are occupationally exposed as well as others who might be exposed in these areas

Radiation Protection Limits for Locations

Protected location

- Walls: 0.3 m beyond the barrier
- Ceilings: 0.5 m above the floor of the room above the vault
- Floors: 1.7 m above the floor of the room below
- Permissible dose at protected location depends on occupancy

Occupancy factor (T): Fraction of time a particular location may be occupied

Maximum shielded dose rate at protected location: P/T

 Assuming occupancy factor T for protected location

Max shielded dose rate traditionally referred to as P/T

NCRP 151 Recommended Occupancy

- T=1: Areas occupied full-time by an individual) e.g. administrative or clerical offices; treatment planning areas, treatment control rooms, nurse stations, receptionist areas, attended waiting rooms, occupied space in nearby building
- T= 0.5: Adjacent treatment room, patient examination room adjacent to shielded vault
- T = 0.2: Corridors, employee lounges, staff rest rooms
- T = 0.125: Treatment vault doors
- T = 0.05: Public toilets, unattended vending rooms, storage areas, outdoor areas with seating, unattended waiting rooms, patient holding areas, attics, janitor's closets
- T = 0.025: Outdoor areas with only transient pedestrian or vehicular traffic, unattended parking

Occupancy Factor Selection

- For interior locations, T=1 and T=0.2 are most common
 T = 1 for work locations
 - T = 0.2 for locations not occupied continuously
- For exterior locations, T = 0.05 is most common
- T < 1 now appropriate for some controlled locations

 Use with T = 0.125 for vault entrance with caution: any higher occupancy location further away must also be protected
 T = 0.5 for adjacent vault appears to be reasonable assumption
- Select T = 0.05 for interior locations with caution
 Should be very unlikely to be occupied (storage, attic, closets)
- T = 0.025 for exterior locations with restricted access
 NRC hourly limit is more constraining for unrestricted locations

Page 12

Use Factor

Use Factor (U) is the fraction of the workload for which the primary beam is directed at the barrier in question

Page 13

- Traditionally U = 0.25 for lateral barriers, ceiling, & floor
- U = 0.1 for tapered portions of ceiling barrier (Example 11)
- Applies to primary barrier calculations, usually not secondary
- NCRP 151 Table 3.1 below consistent with these values TBI may require deviation from these values

90° ga	ntrv angle ir	ntervals	45° gan	itry angle in	tervals
3			Angle	п	Standard
Angle Interval	U (noreent)	Standard Deviation	Interval Center	(percent)	Deviation (percent)
Center	(percent)	(percent)	0º (down)	25.6	4.2
0º (down)	31.0	3.7	45° and 315°	5.8 (each)	3.0
90° and 270°	21.3 (each)	4.7	90° and 270°	15.9 (each)	5.6
180° (up)	26.3	3.7	135° and 225°	4.0 (each)	3.3
		•	180º (up)	23.0	4.4

Secondary Barrier Photon Leakage

Leakage unshielded dose rate

- d_{sc}^2 Assumes H₁ in Sv and W in Gy
- 0.1% leakage fraction is customary Secondary distance d_{sec} in meters
- Calculate shielded dose rate using TVLs in NCRP 151 Table B.7
- Calculation tends to be
- conservative
 - Typical leakage 5X or more lower than 0.1% requirement
- Unlike primary barriers, generally no need for extra margin

Page 14

Page 16

Linac	Le	ead	Con	crete	Steel		Ea	Earth		Borated Poly	
MV	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe	
4	57	57	330	280	96	96	517	439	817	693	
6	57	57	340	290	96	96	533	455	842	718	
10	57	57	350	310	96	96	549	486	866	767	
15	57	57	360	330	96	96	564	517	891	817	
18	57	57	360	340	96	96	564	533	891	842	
20	57	57	360	340	96	96	564	533	891	842	
25	57	57	370	350	96	96	580	549	916	866	
	NCR	P 151	NCR	P 151	Va	Varian		Est. by density vs. concre			
Primary TVL Table B.2		ry TVL e B.2	Table B.7		TVL rela con	ratio itive crete	concrete earth den: BPE =	e = 2.35 g / sity =1.5 g 0.95 g / c	cm ³ [NCI /cm ³ [NC m ³ [NCRF	RP 151, p. RP 151, p 151, p. 1	

No data in NCRP 151 for steel leakage TVL. NCRP 51 Figure E.13 implies steel leakage TVL should be less than primary. Rationale for 96 mm steel TVL based on Varian document #12004 on next chart.

Intensity Modulated Radiation Therapy (IMRT)

- IMRT requires increased monitor units per cGy at isocenter
 - IMRT ratio is the ratio of MU with IMRT per cGy at isocenter
- Percent workload with IMRT impacts shielding 50% typically assumed; 100% if vault is dedicated to IMRT
- Account for IMRT by multiplying workload by IMRT factor IMRT Factor = % IMRT x IMRT ratio + (1 - % IMRT)
- Leakage Workload: W_L = W × IMRT Factor W_L replaces W in leakage unshielded dose calculation with IMRT
- Lower IMRT factor appropriate for neutrons if calculate shielding at the higher MV for a dual MV machine

IMRT Ratio Typical Values

Manufacturar	IMRT	Percent	IMRT	Factor
Wanuacturer	Ratio	IMRT	Photon	Neutron
Varian	3	50%	2	1
Siemens	5	50%	3	1.5
NOMOS	10	50%	5.5	2.75
Tomotherapy	16	100%	16	NA

- Typically assume 50% of treatments with IMRT
 - Pessimistic assumption for dual energy machine since most IMRT done at lower energy (e.g., ${>}75\%$ at 6 MV, ${<}25\%$ at 18 MV)
- Neutron IMRT factor (applicable to dual energy) assumes IMRT equally at high and low energy
 - Since most IMRT is done at the lower energy, an even lower neutron IMRT factor may be appropriate

Neutron Leakage TVL

- TVL recommendation based on NCRP 79 TVL_n = 155 + 56 * Neutron MV for concrete » 211 mm at 1 MV is traditional neutron leakage TVL for concrete
 - TVL_n = 62 + 34 * Neutron MV for borated polyethylene (BPE) » 96 mm at 1 MV is traditional neutron leakage TVL for BPE
 - Estimate other material from concrete or BPE based on hydrogen content

Page 1

Page 21

Lead and steel provide negligible neutron attenuation
 Concrete
 Earth
 Borated Poly

 MV
 TVL1
 TVLe
 TVL1
 TVLe

 1
 211
 221
 231
 06
 06

Secondary Barrier Patient Scatter

Patient scatter unshielded dose rate

$$H_{ps} = \frac{aWU(F/400)}{d^2 d^2}$$

- -a = scatter fraction for 20 x 20 cm
- F is maximum field area in cm²
- » NCRP 151 examples use F=1600 (conservative 40x40 cm field) Effective F is smaller with IMRT
- » F=225 cm² w/ IMRT (15 x 15 cm) $F = (1-\% IMRT) \times 1600 + \% IMRT \times 225$
- Typically use F=1600 even if IMRT is used to add conservatism
- » Safety survey done w/o IMRT
 - » IMRT seldom used at higher MV for dual energy machines
 - » Primary beam adds to patient scatter at small scatter angles

Page 20

Page 22

- Scatter fraction as function of MV and scatter angle in NCRP 151 Table 5.4
- Scatter energy as function of MV and scatter angle in NCRP 151 Table B.6

Use Factor (U) and Scatter

- Use Factor is typically taken as 1 for secondary calculations
 - Invariably true for leakage calculations
- Scatter is significant only for secondary barriers immediately adjacent to primary barriers
 - Scatter is negligible for all other orientations NCRP 151 : "However, if the [scatter] calculation is performed with the minimum angle of scatter from the patient to the point of calculation and a use factor of 1 is also used, the barrier thickness will be overestimated due to the conservatively higher scatter fraction from the smaller scattering angles"
- Sometimes appropriate to apply use factor to scatter
 - U = 0.25 may be appropriate if scatter angle < 35° » i.e., secondary barrier immediately adjacent to primary barrier
 - » U=0.25 best used only for retrofit (to avoid unnecessary
 - modifications) or if there are severe space constraints
 - Otherwise U = 1

NCRP 151 Table B.4 Patient Scatter Fraction for 400 cm² Field

- Scatter fraction increases as angle decreases
- Scatter fraction vs MV may increase or decrease
- Tends to increase with MV at small scatter angles
- Decreases with increasing MV at large scatter angles

Linac				Angle (de	egrees)			
MV	10	20	30	45	60	90	135	150
4	1.04E-02	6.73E-03	2.77E-03	2.09E-03	1.24E-03	6.39E-04	4.50E-04	4.31E-04
6	1.04E-02	6.73E-03	2.77E-03	1.39E-03	8.24E-04	4.26E-04	3.00E-04	2.87E-04
10	1.66E-02	5.79E-03	3.18E-03	1.35E-03	7.46E-04	3.81E-04	3.02E-04	2.74E-04
15	1.51E-02	5.54E-03	2.77E-03	1.05E-03	5.45E-04	2.61E-04	1.91E-04	1.78E-04
18	1.42E-02	5.39E-03	2.53E-03	8.64E-04	4.24E-04	1.89E-04	1.24E-04	1.20E-04
20	1.52E-02	5.66E-03	2.59E-03	8.54E-04	4.13E-04	1.85E-04	1.23E-04	1.18E-04
24	1.73E-02	6.19E-03	2.71E-03	8.35E-04	3.91E-04	1.76E-04	1.21E-04	1.14E-04

					1					_
	Line	Parameter		Ur	nits	its Value			Calculation	
	а	Design Dose Lim	it (P)	mS	v/wk	0	.1			
	b Occupancy Facto		or (T)				1			
	c P/T			mS	v/wk	0.1	00		a/b	
	d Machine X-ray Er		nergy	N	IV	1	8			
	е	Vendor				Va	rian			
										-
						Va	lue			
Line		Parameter	Ur	nits	w/o I	MRT	with IN	IRT	Calculation	
а	м	ax Field Size	cm		4	0	40			
b	Fract	ion of Workload			50	%	50%			
с	Effe	ctive Field Area	сп	1^2		1600.0			b ₁ *a ₁ *2 + b ₂ *a ₂	^2
d	Effe	ctive Field Size	с	m		40).0		sqrt (c)	
е	s	catter Angle	d	eg		6	0			
f	Mach	ine X-ray Energy	N	IV		1	8			
g	Sca	Scatter / 400 cm^2				4.24	E-04		Function of e	& f
h	Sc	Scatter Fraction				0.00	0170		g*c/400	

	Ew	Example 1: Direct Shielded Door											Page	26
		ampi					21	101						
	111	CVII	355 U	Jaicui	ation	[<u>2</u> 0]	∠]							
	Line		Parame	ter	Units	Photo	on ae	Ph	oton atter	Neutron Leakage	Ca	culation		
	а	Wor	kload / Tr	eatment	Gy/pt 3		-	3		3	NCRP 151 defau		lt	
	b	Pa	atients pe	r Day	pt/day 30			30		30	NCRP 151 defaul		lt	
	с	1	Workload	(W)	Gy/wk	450		4	150	450	5	*a*b		
	d		Use Fac	tor	Ratio	1			1	1				
	е		Fractio	n		1.00E-	-03	1.70	0E-03	1.5E-03	18 M	IV values		
	f		IMRT Fac	tor		2	2		1	1				
	я	Isoco	ocenter to Protected		ft	23.0	,	2	3.0	23.0				
	h	F	Point Distance		m	7.0		;	7.0	7.0	g	0.3048		
	i	Unst	ielded D	ose Rate	mSv/wk	1.83E+	1.83E+01		5E+01	1.37E+01	1000*	c*d*e*f/h^2	2	
	i	-	Transmis	sion		8.44E-	-04	8.4	4E-07	8.81E-04	se	e below		
	k	Shi	elded Do	se Rate	mSv/wk	0.015	54	0.0	0000	0.0121		1.1		
	L	Total S	Shielded	Dose Rate	mSv/wk			0.0	0276		Su	m row k		
				_										
		Material Thickness	Slant Thickness		P	hoton Leaka	ge			Scatter		Neu	tron	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Tra	ns.	TVL1 (mm) TVLe (mm)	Trans.	TVL (mm)	Tra	ns.
Ins	side Layer	0.25	7	Steel	96	96	8.39	E-01	68	68	7.80E-01	N/A	1.00E	E+00
L	ayer #2	2.5	73	Lead	57	57	5.17	E-02	32	32	5.11E-03	N/A	1.005	E+00
L	ayer #3	10	293	Borated Poly	891	842	4.48	E-01	230	230	5.31E-02	96	8.818	E-04
L	.ayer #4	2.5	73	Lead	57	57	5.17	E-02	32	32	5.11E-03	N/A	1.00E	E+00
Out	side Layer	0.25	7	Steel	96	96	8.39	E-01	68	68	7.80E-01	N/A	1.00E	E+00
	Slant Angle	(degrees):	30		18 MV	Total:	8.44	E-04		Total:	8.44E-07	Total:	8.818	E-04

		110 00	noenen	511[1 51 5]
ar Side o	f Door Distance, Thickness, and Length	Calculation	s	
Line	Parameter	Units	Value	Calculation
а	Door Overlap	in	7.5	
b	Gap Between Barrier and Door	in	0.5	
с	Distance from Isocenter to	ft	11	
d	Far Side of Entrance	in	132	c * 12
е	Distance from Isocenter to	ft	16.5	
f	Inside Face of Door	in	198	e * 12
g	Slant Angle at Far Side of Entrance	deg	54.8	atan(f / (a + d))
h	Slant Thickness	in	12.4	a / cos(g) - b / sin(g)
i	at Corner	mm	315	25.4 * h
j	Thickness of Lead Added to Wall	in		Selected value
k	Slant Thickness through Lead	mm	132	25.4 * j / cos(g)
L	Slant Thickness through Concrete	in	183	i-k
m	Concrete Thickness	in	4.15	L * cos(g) / 25.4
n	Borated Poly Thickness	in	6	Selected value
0	Borated Poly Slant Thickness	mm	186	25.4 * n / sin(g)
р	Minimum Desired Slant Thickness	in	42	Dose rate < P/T / 3
a	Minimum Length of Added Lead	in	35	p*sin(q)

Example 2: Direct Shielded Door Far Side of Entrance Shielded Dose Rate Calculation [2 of 3]

Page 33

Door Scatter Fraction Calc	ulation			
		Va	lue	
Parameter	Units	w/o IMRT	with IMRT	Calculation
Max Field Size	cm	40	40	
Fraction of Workload		50%	50%	
Effective Field Area	cm^2	160	0.0	b ₁ *a ₁ *2 + b ₂ *a ₂ *2
Effective Field Size	cm	40).0	sqrt (c)
Scatter Angle	deg	54	4.8	
Machine X-ray Energy	MV	1	8	
Scatter / 400 cm^2		5.42	E-04	Function of e & f
Scatter Fraction		0.0	0217	g*c/400
	Door Scatter Fraction Calc Parameter Max Field Size Fraction of Workload Effective Field Area Effective Field Size Scatter Angle Machine X-ray Energy Scatter / 400 cm^2 Scatter Fraction	Door Scatter Fraction Calculation Parameter Units Max Field Size cm Fraction of Workload cm*2 Effective Field Area cm*2 Effective Field Size cm Scatter Angle deg Machine X-ray Energy MV Scatter / 400 cm*2 cm Scatter Fraction cm	Door Scatter Fraction Calculation Parameter Units wolnRT Max Field Size cm 40 Fraction of Workbad 50% 166 Effective Field Area cm*2 166 Effective Field Area cm*2 46 Scatter Angle deg 55. Machine X-ray Energy MV 11 Scatter / 400 cm*2 5.42 5.42	Door Scatter Fraction Calcutation Parameter Units with IMRT with IMRT Max Field Size cm 40 40 Fraction of Workbad 50% 55% 55% Effective Field Area cm*2 1600.0 56% Scatter Angle deg 54.8 542.04 Machine X-ray Energy MV 18 542.04 Scatter / 400 cm*2 5.422.04 5.422.04

	Ex	ampl	e 2:	Direct	Shie	Ided	Do	or	Far	Side	of		Page	9 34
	En	trang	e Sh	nielder	d Dos	e Ra	te (Ca	lcul	ation [3 of 3	3]		
	Line		Parame	ter	Units	Photo	on ige	Pho Scr	oton atter	Neutron Leakage	Cal	culation		
	а	Worl	kload / Tr	eatment	Gy/pt	3		3		3	NCRP 151 defaul		it	
	b	Pr	atients pr	er Day	pt/day	/ 30		30		30	NCRP 151 defaul		it	
	с	1	Workload	I (W)	Gy/wk	450		4	50	450	5	*a*b		
	d		Use Fac	tor	Ratio	1	1		1	1				
	е		Fractio	n		1.00E-	1.00E-03 2		7E-03	1.50E-03	18 M	V values		
	f		IMRT Fa	ctor		2		1		1				
	g	Isocr	Isocenter to Protected		ft	25.0	,	2	5.0	25.0				
	h	Point Distance		m	7.6		7	7.6	7.6	g *	0.3048	_		
	i	Ur	shielded	Dose	mSv/wk	1.55E+	+01	1.68	3E+01	1.16E+01	1000*0	c*d*e*f/h^2	2	
	i	-	Fransmis	sion		8.31E-	-04	6.14	4E-06	1.55E-03	se	e below		
	k	5	hielded	Dose	mSv/wk	0.01	3	0.	000	0.018		1.1		
	L	Tot	al Shield	ed Dose	mSv/wk		-	0.	031		Su	m row k		
		Material Thickness	Slant Thickness		Pt	hoton Leaka	ge			Scatter		Neur	tron	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Tran	ns.	TVL1 (mr	m) TVLe (mm)	Trans.	TVL (mm)	Tra	ans.
Ins	ide Layer	3	132	Lead	57	57	4.77E	-03	36	36	2.01E-04	N/A	1.005	E+00
L	ayer #2	4.1	183	Concrete	360	340	2.90E	-01	244	244	1.78E-01	211	1.36	E-01
L	ayer #3	6	186	Borated Poly	891	842	6.01E	-01	244	244	1.72E-01	96	1.14	E-02
L	ayer #4						1.00E	+00			1.00E+00		1.005	E+00
Out	side Layer						1.00E	+00			1.00E+00		1.00	E+00
	Slant Angle	(degrees):	54.8		18 MV	Total:	8.31E	-04		Total:	6.14E-06	Total:	1.55	E-03

Direct-Shielded Door: Near Side of Entrance Neutrons / Capture Gammas

- Geometry similar to short maze

 Therefore reasonable to apply maze calculation
- Geometry is not exactly the same as a short maze
 - Also reasonable to include margin since maze calculation may underestimate neutron dose rate
- Neutrons & capture gammas dominate scatter for MV ≥ 10
- Requires less material than far side of entrance
- Lower unshielded dose rate
 - Lower energy

Steps in Maze Neutron and Capture Gamma Calculation

- First step: Calculate neutron fluence at point A
- Second step: Calculate unshielded capture gamma dose rate at protected location
 Uses neutron fluence at point A
- Third step: Calculate unshielded neutron doseequivalent rate at protected location

 Fourth step: Calculate attenuation of maze neutrons & capture gammas by the shielding at the near side of the entrance

NCPD 454 Tab					Page 39
NCKP IST Tab	ie D.s				
Total Neutron	Sour	ce St	rength	1 (Q _n)	
	Vendor	MV	Qn N/Gy		
		10	6.0E+10		
		15	7.6E+11		
	Varian	18	9.6E+11		
		20	9.6E+11		
		24	7.7E+11		
		10	8.0E+10		
		15	2.0E+11		
	Siemens	18	8.8E+11		
		20	9.2E+11		
		24	1.5E+12		
	F 1.1.1.	10	1.4E+11		
	Elekta	15	3.2E+11		
	/	18	6.9E+11		
	Philips	20	9.6E+11		
		24	1.4E+12		
		12	2.4E+11		
	GE	15	4.7E+11		
		18	1.5E+12		
		25	2.4E+12		

Maze neutron dose-equivalent

$$H_{\rm n} = W_{Ln} H_{n,D}$$

 Add a factor of 5 margin

 Since this particular geometry is only similar to a maze, not an exact match

Exampl	e 3: L	Direct	Shield	led Doo	or Near	Side of	
Entrand	e Sh	ielded	Dose	Rate C	alculati	on [1 of	9]

Near Side of Door Material Thickness Calculation								
Line	Parameter	Units	Value	Calculation				
а	Door Overlap	in	7.5					
b	Gap Between Barrier and Door	in	0.5					
с	Angle at Near Side Wall	deg	45.0					
d	Wall Overlap Beyond Entrance	in	7.0	(a*tan(c) - b)/ tan(c)				
е	Thickness of Lead Added to Wall	in	1.5					
f	Remaining Concrete Wall	in	5.5	d-e				
g	Material Added beyond Wall	in	3					

 Material added to wall selected as required to make shielded dose rate less than dose limit

Example 3: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [2 of 9]

Near Side	Near Side of Door Scatter Fraction Calculation										
			Va	lue							
Line	Parameter	Units	w/o IMRT	with IMRT	Calculation						
а	Max Field Size	cm	40 40								
b	Fraction of Workload		50%	50%							
с	Effective Field Area	cm^2	1600.0		b ₁ *a ₁ *2 + b ₂ *a ₂ *2						
d	Effective Field Size	cm	40	0.0	sqrt (c)						
е	Scatter Angle	deg	8	5							
f	Machine X-ray Energy	MV	1	8							
g	Scatter / 400 cm^2		2.16E-04		Function of e & f						
h	Scatter Fraction		0.00	0086	g * c / 400						

Exa	amol	e 3:	Direc	t Shie	lded	Doc	or Ne	ar Sic	le of		Page
Ent	ranc	e Sh	ielde	d Do	se Ra	ate C	alcu	lation	[3 of	9]	
Near Side of Door Shielded Dose Due to Direct Leakage											
Line	F	Paramete	r	Units	Photo	ge S	hoton catter	Neutron Leakage		Calculatio	n
а	Workle	oad / Trea	atment	Gy/pt	3		3	3	NCF	P 151 det	ault
b	Pati	ents per	Day	pt/day	30		30	30	NCF	P 151 det	ault
с	W	orkload (W)	Gy/wk	450		450	450		5*a*b	
d	ι	lse Facto	vr	Ratio	1		1	1			
е		Fraction			1.00E-	03 8.6	65E-04	1.50E-03	11	18 MV values	
f	IN	IRT Fact	or		2		1	1			
g	Isocen	ter to Pro	otected	ft	21.0) :	21.0	21.0			
h	Po	int Distar	nce	m	6.4		6.4	6.4		g * 0.3048	
i	Uns	hielded [Dose	mSv/wk	2.20E+	01 9.5	0E+00	1.65E+01	100	0*c*d*e*f/	h^2
j	Tra	ansmissi	on		2.88E-	04 5.9	9E-07	1.58E-06		see below	
k	Sh	ielded Do	ose	mSv/wk	0.00	6 (0.000	0.000		i*j	
L	Total	Shielded	Dose	mSv/wk			0.006			Sum row I	c .
ransmission Ca	culation for	Direct Leal	karne at Near S	Side of Door							
	Material	Slant		PI	hoton Leaka	ge		Scatter		Neu	tron
Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	TVL1 (mm)	TVLe (mm)	Trans.	TVL (mm)	Trans.
Inside Layer	48	1224	Concrete	360	340	2.88E-04	197	197	5.99E-07	211	1.58E-06
Layer #2						1.00E+00			1.00E+00		1.00E+00
Outside Layer						1.00E+00			1.00E+00		1.00E+00
Slant Angle	e (degrees):	5		18 MV	Total:	2.88E-04		Total:	5.99E-07	Total:	1.58E-06

Intra	ince	Shi	elded	Dose	Rate	a (Calc	ul	ation	[4 of !	91
all Scatte	er Transmis	sion fo	r Near Side	of Door							~]
Line	Symbol		Parameter			- L	Jnits	V	alue	Calculat	lion
а	MV		Machine	X-ray Energ	IY		MV		18		
b	w		Wo	orkload		G	iy/wk		450		
с	f		Patient t	ransmissio	n			(0.27	0.27 if MV	≥10
d	d	Distance from target to primary bar			ary barrier		ft		25	measur	ed
е	u ₀		wall				m	1	7.62	d * 0.30	48
f	d	Distance from primary barrier wall to			er wall to		ft		9	measured	
g	u,	near side of maze entrance				m		2.74	f * 0.30	48	
h	α,	Reflection coefficient			nt	1	/ m ²	0.	0016	Table 8a wit 85° scatter	h 18 MV angle
1		Effective field size				cm	4	10.0	see abo	ve	
J	A ₀		Beam area	at far maze	wall		m²	9.29		(e * i/100)^2
k	U		Use	Factor				(0.25	rientation wi dose ra	th highest ate
L	f H _S	v	Vall scatter	unshielded	dose	m	Sv/wk	1.0	3E+00	1000 * b * c * / (e^2 * g	k*h*j 1^2)
	Near Side	of Door	Wall Scatte	er Transmis	sion Calcu	latio	n				
			Material Thickness	Slant Thickness			w	all S	catter	Photon	
	Barrie	ər	inches	mm	Materia	d i	TVL1 (n	nm)	TVLe (mm) Trans.	
	Inside L	ayer	1.5	54	Lead		8		8	1.84E-07	
	Layer	#2	5.5	198	Concret	e	160		160	5.82E-02	
	Layer	#3	3	108	Borated P	oly	396		396	5.34E-01	
	Slan	t Angle	(degrees):	45			0.3 M	v	Tota	I: 5.73E-09	

Example 3: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [5 of 9]

Page 51

Maze Neutron Fluence Calculation									
Line	Symbol	Parameter	Units	Value	Calculation				
а	MV	Machine X-ray Energy	MV	18					
b		Vendor		Varian					
с		Neutron IMRT Factor		1					
d	β	Head Transmission Factor		1	1 for lead, 0.85 for tungsten head shield				
е	Ь	Distance from Isocenter to maze	ft	17	measured				
f	u ₁	opening (Point A)	m	5.18	e * 0.3048				
g	4	Voult Average Length	ft	28	measured				
h	uL	vauit Average Length	m	8.53	g * 0.3048				
i	d	Marula Arranges Miskle	ft	25	measured				
j	uw	vauit Average width	m	7.62	i * 0.3048				
k		Vault Average Height	ft	10	measured				
L	n	vauit Average neight	m	3.05	k * 0.3048				
m	S,	Vault Surface Area	m ²	228.5	2 * (h*j + h*L + j*L)				
n	Qn	Neutron Source Strenth	n / Gy	9.60E+11	Function of a & b				
٥	φ	Neutron Fluence at Point A per Gy	n /m²/Gy	7.32E+09	c*n* [d/(4* * f^2) + (5.4*d+1.3)/(2* * *m)]				

Example 3: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [6 of 9]

Page 52

Page 54

Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	18	
а	w	Workload	Gy/wk	450	
с	φΑ	Neutron Fluence at Point A per Gy	n /m²/Gy	7.32E+09	see above
d	d	Distance from maze opening	ft	9	measured
е	u ₂	(Point A) to door	m	2.74	d * 0.3048
f	TVD	Tenth-Value Distance	m	5.4	3.9 if a<18, 5.4 otherwise
g	к	Ratio Capture Gamma Dose- Equivalent to Neutron Fluence		6.90E-16	Constant
h	hφ	Capture Gamma Unshielded Dose at Door per Dose at Isocenter	Sv/Gy	1.57E-06	g * c * 10^(-e / f)
i		Capture Gamma Unshielded Dose Rate	mSv/wk	7.06E-01	1000 * a * h

Example 3: Direct Shielded Door Near Side of									
Entrance Shielded Dose Rate Calculation [7 of 9]									
Maze Neutron Unshielded Dose-Equivalent Calculation (Modified Kersey Method)									
Line	Symbol	Parameter	Units	Value	Calculation				
а	w	Workload	Gy/wk	450					
b	φΑ	Neutron Fluence at Point A per Gy	n /m ² /Gy	7.32E+09	See above				
с	d	Distance from maze opening	ft	9	measured				
d	u ₂	(Point A) to door	m	2.74	c * 0.3048				
е			ft	4	measured				
f	a ₀	Inner Maze Entrance Width	m	1.22	e * 0.3048				
g			ft	10	measured				
h	1 "	Inner Maze Entrance Height	m	3.05	g * 0.3048				
i	S ₀	Inner Maze Cross-Sectional Area	m ²	3.72	f*h				
j		M	ft	4	measured				
k	a _m	Maze width	m	1.22	j* 0.3048				
L			ft	10	measured				
m	n _m	Average Height Along Maze	m	3.05	L * 0.3048				
n	S	Maze Cross-Sectional Area	m ²	3.72	i*m				
0	TVDn	Maze Neutron Tenth-Value Distance	m	3.97	2.06 * sqrt(n)				
р	H _{n,D}	Maze Neutron Unshielded Dose- Equivalent per Dose at Isocenter	Sv/Gy	4.62E-06	2.4E-15 * b * sqrt(i / n) * [1.64*10^(-d/1.9)+10^(-d/o)]				
q	Hn	Maze Neutron Unshielded Dose- Equivalent Rate at Door	mSv/wk	2.08E+00	1000 * a * p				
r		Neutron Unshielded Dose-Equivalent Rate at Door with margin	mSv/wk	1.04E+01	5*q				

Example 3: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [8 of 9]

Neutron Transmission for Near Side of Maze Entrance										
	Material Thickness	Slant Thickness		Neut	Neutron					
Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.				
Inside Layer	1.5	54	Lead	1000000	1000000	1.00E+00				
Layer #2	5.5	198	Concrete	161	161	5.93E-02				
Layer #3	3	108	Borated Poly	45	45	4.03E-03				
Layer #4						1.00E+00				
Outside Layer						1.00E+00				
Slant Angle	(degrees):	45		0.1 MV	Total:	2.39E-04				

Capture Gamma Transmission for Near Side of Maze Entrance Material Stant Thickness Thickness Barrier inches mm Material TVL1 (rr Capture Gammas Photon Trans. TVL1 (mm) TVLe (mm) 61 61 410 370 inches 1.5 5.5 54 Lead 198 Concrete 1.31E-01 3.01E-01 Inside Layer Layer #2 370 3.01E-01 916 7.63E-01 1.00E+00 1.00E+00 Total: 3.00E-02 Layer #3 Layer #4 3 108 Borated Poly 1015 916 Outside Layer Slant Angle (degrees): 45 10 MV

Example 3: Direct Shielded Door Near Side of	
Entrance Shielded Dose Rate Calculation [9 of 9]	

Page 55

Maze Shielded Dose at Door										
Line	Parameter	Units	Wall Scatter	Direct Leakage	Neutrons	Capture Gammas				
а	Calc. Unshielded Dose	mSv/wk	1.03E+00	6.36E-03	1.04E+01	7.06E-01				
b	Total / Calc. Dose Rate		2.64	1	1	1				
с	Unshielded Dose Rate	mSv/wk	2.73E+00	6.36E-03	1.04E+01	7.06E-01				
b	Energy for TVL	MV	0.3	18	0.1	10.0				
с	Transmission		5.73E-09	1.00E+00	2.39E-04	3.00E-02				
d	Shielded Dose	mSv/wk	0.0000	0.0064	0.0025	0.0212				
е	Total Shielded Dose	mSv/wk		0.0	0300					

Contact Information

Melissa C. Martin, M.S., FACR, FAAPM, FACMP Certified Medical Physicist Therapy Physics, Inc. 879 W 190th Street, Suite 419 Gardena, CA 90248 USA Office Phone: +1 310-217-4114 Office Fax: +1 310-217-4118 Cell Phone: +1 310-612-8127 E-mail: melissa@therapyphysics.com

